metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qian Yang,^a Li Zhang^b and Duan-Jun Xu^a*

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ^bFood and Environment Science College, Zhejiang Gongshang University, Hangzhou 310012, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.004 Å R factor = 0.038 wR factor = 0.097 Data-to-parameter ratio = 15.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aqua(2,4-dihydroxybenzoato- κO^1)bis(1,10phenanthroline- $\kappa^2 N, N'$)nickel(II) 2,4-dihydroxybenzoate monohydrate

The crystal structure of the title compound, $[Ni(C_7H_5O_4)-(C_{12}H_8N_2)_2(H_2O)](C_7H_5O_4)\cdot H_2O$, consists of Ni^{II} complex cations, 2,4-dihydroxybenzoate (dHBA) anions and solvent water molecules. The Ni^{II} complex cation assumes a distorted octahedral coordination geometry formed by two 1,10-phenanthroline (phen) ligands, one dHBA ion and a water molecule. π - π Stacking is observed between partially overlapped, parallel phen ligands and between a nearly parallel phen ligand and benzene ring of dHBA.

Comment

As part of our ongoing investigation on the nature of π - π stacking in metal complexes (Liu *et al.*, 2004; Li *et al.*, 2005), the title Ni^{II} compound, (I), has recently been prepared and its crystal structure is presented here.

The crystal structure of (I) consists of Ni^{II} complex cations, uncoordinated 2,4-dihydroxybenzoate (dHBA) anions and solvent water molecules (Fig. 1). The Ni^{II} ion is coordinated by a dHBA anion, a water molecule and two 1,10-phenanthroline (phen) molecules with a distorted octahedral coordination geometry (Table 1). The coordinated water molecule is hydrogen bonded with the adjacent coordinated carboxylate group, resulting a larger Ni-O1-C25 bond angle of 133.46 (12)°. The two phen ligands are nearly perpendicular to each other, with a dihedral angle of 88.08 (4)°.

Aromatic π - π stacking between phen ligands is commonly observed in metal complexes (Pan & Xu, 2005; Su & Xu, 2005); it also occurs in the crystal structure of (I). A partially overlapped arrangement of parallel phen ligands is observed in the crystal structure (Fig. 2). The face-to-face separations between N3-phen and N3^{iv}-phen and between N2-phen and N2^v-phen are 3.494 (11) and 3.445 (5) Å, respectively [symmetry codes: (iv) -x, 1 - y, 1 - z; (v) 1 - x, 2 - y, 2 - z]. Moreover, the benzene ring of the uncoordinated C33ⁱⁱⁱ-

© 2006 International Union of Crystallography All rights reserved

Received 15 September 2006 Accepted 16 September 2006

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate the hydrogen bonding.

Figure 2

 π - π Stacking between phen ligands [symmetry codes: (iv) -x, 1 - y, 1 - z; (v) 1 - x, 2 - y, 2 - z].

Figure 3

 π - π Stacking between the N1-phen ligand and uncoordinated dHBA ion [symmetry code: (iii) 1 - x, 1 - y, 2 - z].

containing dHBA anion [symmetry code: (iii) 1 - x, 1 - y, 2-z is nearly parallel to the N1-phen ligand [dihedral angle 5.27 $(10)^{\circ}$ and partially overlapped with the N1-phen ligand (Fig. 3). The separations of C33ⁱⁱⁱ, C37ⁱⁱⁱ and C38ⁱⁱⁱ from the N1-phen plane are 3.532 (3), 3.321 (3) and 3.426 (3) Å, respectively. These findings suggest the existence of $\pi - \pi$ stacking between the N1-phen ligand and the C33ⁱⁱⁱ-benzene ring of the dHBA anion.

Extensive intra- and intermolecular O-H···O hydrogen bonding is observed in the crystal structure (Table 2). Weak C-H···O hydrogen bonding also occurs between Ni^{II} complex cations in the crystal.

Experimental

A water (15 ml) and ethanol (5 ml) mixture containing Ni(NO₃)₂·6H₂O (1 mmol), 2,4-dihydroxybenzoic acid (2 mmol), phen (1 mmol) and Na₂CO₃ (1 mmol) was refluxed for 3 h, and filtered after cooling to room temperature. Single crystals of (I) were obtained from the filtrate after 2 d.

Crystal data

$[Ni(C_7H_5O_4)(C_{12}H_8N_2)_2(H_2O)]$ -	$\gamma = 116.327 \ (13)^{\circ}$
$(C_7H_5O_4)\cdot H_2O$	$V = 1697.1 (13) \text{ Å}^3$
$M_r = 761.37$	Z = 2
Triclinic, P1	$D_x = 1.490 \text{ Mg m}^{-3}$
a = 12.347 (4) Å	Mo $K\alpha$ radiation
b = 13.408 (6) Å	$\mu = 0.64 \text{ mm}^{-1}$
c = 13.578 (6) Å	T = 295 (2) K
$\alpha = 118.829 \ (14)^{\circ}$	Prism, green
$\beta = 90.106 \ (14)^{\circ}$	$0.35 \times 0.19 \times 0.13 \text{ mm}$
Data collection	

16731 measured reflections

 $R_{\rm int} = 0.026$ $\theta_{\rm max} = 27.5^{\circ}$

7612 independent reflections 5990 reflections with $I > 2\sigma(I)$

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min}=0.785,\ T_{\rm max}=0.920$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0494P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.038$ wR(F²) = 0.097 + 0.1081P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 0.27 \text{ e} \text{ Å}^{-3}$ S = 1.077612 reflections $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$ 482 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Ni-O1	2.0681 (15)	Ni-N2	2.1002 (17)
Ni-O9	2.0279 (16)	Ni-N3	2.1047 (17)
Ni-N1	2.0723 (16)	Ni-N4	2.0748 (15)
O9-Ni-O1	89.00 (7)	N1-Ni-N2	79.85 (6)
O9-Ni-N1	92.39 (7)	N4-Ni-N2	93.00 (6)
O1-Ni-N1	93.98 (6)	O9-Ni-N3	171.54 (6)
O9-Ni-N4	94.57 (7)	O1-Ni-N3	85.28 (7)
O1-Ni-N4	93.06 (6)	N1-Ni-N3	94.21 (6)
N1-Ni-N4	170.18 (6)	N4-Ni-N3	79.55 (6)
O9-Ni-N2	91.80 (7)	N2-Ni-N3	94.55 (7)
O1-Ni-N2	173.81 (5)		

Table 2	
Hydrogen-bond geometry (Å, °)).

D II (D II	TT 4	D ($D - \mathbf{H} \cdots A$
$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	
$O1W-H1A\cdots O6$	0.99	1.77	2.715 (3)	159
$O1W-H1B\cdots O5^{i}$	0.91	1.78	2.685 (3)	172
O3−H3···O1	0.99	1.58	2.517 (2)	157
$O4-H4\cdots O1W^{ii}$	0.92	1.68	2.589 (3)	172
O7-H7···O6	0.96	1.62	2.508 (3)	151
O8−H8···O2	0.94	1.87	2.733 (3)	151
O9−H9A…O2	0.97	1.72	2.632 (3)	155
$O9-H9B\cdots O5^{iii}$	0.96	1.66	2.611 (3)	167
$C20{-}H20{\cdot}{\cdot}{\cdot}O3^{iv}$	0.93	2.59	3.509 (4)	168

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 2; (iv) -x, -y + 1, -z + 1.

H atoms of the water molecules and hydroxy groups were located in a difference Fourier map and refined as riding in their as-found relative positions with $U_{iso}(H) = 1.5U_{eq}(O)$. Aromatic H atoms were placed in calculated positions with C-H = 0.93 Å, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The work was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.

Liu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183-m185.

Pan, T.-T. & Xu, D.-J. (2005). Acta Cryst. E61, m740-m742.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). *SHELXL97*. University of Göttingen, Germany. Su, J.-R. & Xu, D.-J. (2005). *Acta Cryst.* C61, m256–m258.